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Chapter 1

Background

1.1 Introduction

Over the years the problem of query complexity for relational databases has been

widely studied. Unlike earlier databases, the relational model can be embedded

into a well established formal framework: that of mathematical logic. This al-

lows us to transfer results about logics to (relational) database theory. Regarding

queries, their expressibility and complexity, there is a particularly close relation-

ship with finite model theory and descriptive complexity theory. The link the

latter creates between classes of logical formulae — which formalize queries —

and complexity classes will be of pivotal importance for all things to come here.

However this certain view of relational databases has its limitations. To meet

the challenge of an evergrowing range of database applications, some of which

would have been considered “non-standard” until recently, it is crucial to develop

new theories as background. For one, the classical theories either only allow

finite databases, or, when using infinite domains, go to considerable trouble to

ensure that the amount of stored data is always finite. A recent development

overcoming these limitations replaces finite relations by finitely representable

relations (constraint databases, e.g. [9, 18, 7]). The models considered there

are especially suited for spatial database applications.

A further problem, sometimes simply ignored in classical relational database the-

ory (cf. [22]), arises from the use of numerical operations in database queries.

Only recently have there been efforts to provide a sound logical framework for in-

cluding infinite domains required even for simple operations like addition. We will

introduce the notion of metafinite structures as introduced by Grädel, Gurevich

[6], which will serve as basis for two extended database models.

Another aspect is the reliability of information. Even when keeping in mind that

3



CHAPTER 1. BACKGROUND 4

every database is only an abstraction or an approximation of some real-world

phenomena, the data it contains is generally assumed to be absolutely correct.

Further there is no method short of deleting an entry to express that said entry

is fully or partially incorrect. The emphasis of this work is to deal with the

(un)reliability of database information, building on the initial results developed

by de Rougemont [16].

Unreliable data can enter a database through many doors like unreliable sources

of data and aging of information. Our approach is of a probabilistic nature,

augmenting databases with probabilities about the correctness of stored atomic

information. This kind of probabilistic database leads to an extended terminol-

ogy and some new questions. We now have to deal with the given database in

the context of a set of possible databases. A database is possible, if the differ-

ences compared with the given database are listed as having positive probability.

Most often the given database will be the one with the highest probability of be-

ing the true database amongst all possible databases. Viewing the set of possible

databases as probability space will enable us to use common stochastical methods

along the way. An exact definition of a probabilistic database has to be estab-

lished. Furthermore it is desirable to find an exact formalization of the quality of

a query result. As the given database may differ from the actual database, which

is available only as a member of a probability space, a user will be interested in

how far a query result resembles the actual result. The key point of interest in

this work is to determine the complexity of these query reliability questions with

respect to the query itself.

Most previous research conducted in the area of probabilistic databases goes into

various other directions. Many works are centered around probabilistic deduc-

tive databases (e.g. [19, 11]). There classical logic-programming approaches are

extended to include unsure information in the shape of rules with probabilities.

Recently there has also been work studying more practical aspects of querying

probabilistic relational databases (e.g. [26, 12]).

For the remainder of this chapter we recall some definitions from relational

databases, complexity theory and stochastics together with some general results

required later on. In Chapter 2 we introduce de Rougement’s idea of probabilistic

databases and a natural extension thereof. Results on the complexity of the query

reliability question are given. In Chapter 3 we develop more efficient algorithms

for computing query reliabilities using polynomial-time approximation schemes.

In Chapter 4 we finally look at the possibilities arising from the metafinite set-

ting. We discuss an embedding of the previous probabilistic databases and a new

kind of databases.
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1.2 Formalism of Relational Databases

As already hinted, the database model of choice for this work is the relational

model. Now a relational database can be viewed as a finite relational structure,

that is, a finite collection of relations over a finite domain. More formally, let

σ = {R1, . . . , Rt} be a relational vocabulary consisting of relation symbols Ri with

arity ki. Let A be a finite set. Then the finite structure A = (A,RA
1 , . . . , RA

t ),

where RA
i ⊆ Aki is the interpretation of Ri in A, is a relational database.

We use formulae and sentences as queries for our databases. Let L be a logic

(e.g. FO). If ϕ is a formula with k free variables in L(σ) and A is a database

with vocabulary σ, the result of the evaluation of ϕ on A is defined as follows:

• If k = 0 the result is true, iff A |= ϕ.

• If k > 0 the result ϕA is the set of all k-tuples in1A satisfying ϕ;

ϕA = {ā | A |= ϕ[ā]}.

Typical query languages considered are QF, FO and SO — the classes of quantifier-

free, first-order and second-order formulae, respectively. We will also look at the

class of conjunctive queries, a subset of FO. An existential formula ϕ is conjunc-

tive, iff it can be equivalently transformed into the form

ϕ = ∃x1 . . . ∃xk (ϕ1 ∧ · · · ∧ ϕn) ,

where the ϕi are atomic formulae.

The general situation henceforth will be that a given database is to be queried

and, in complexity theoretic terms, we are interested in how difficult this is. All

complexity considerations are with respect to data complexity, i.e. a query is

fixed and the complexity is given as function in the size of the database. Actu-

ally we would rather have to take the size of an appropriate input encoding of

the database on a Turing band as input size. However we do not consider any

complexity class below P and the size of the input encoding is polynomial in the

size of the database (i.e. the underlying domain).

Other possibilities for complexity measures are to study program complexity,

where the database is fixed and the query or program is modified, and com-

bined complexity viewing both the database and the query as input. There, both

program and database size are used as parameters for computational complexity.

The motivation for ignoring the size of the query is that it will usually be very

much smaller than the database.

1If A is a set and ā a k-ary tuple, we say “ā is in A” or ā ∈ A, when we mean ā ∈ Ak.
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1.3 Notes on Complexity Theory

The main concern of this work is to deal with complexity theoretic aspects of

querying databases and calculating reliabilities of query results. We will mostly

use the Turing machine (TM) computation model for complexity considerations.

Apart from distinguishing nondeterministic Turing machines (or NTMs) from

deterministic Turing machines (or DTMs), we classify TMs according to whether

they decide a language or calculate a (partial) function. If M is a TM, we denote

by L(M) the language decided by M resp. by fM the function calculated by M .

Most of the complexity classes encountered later on will lie somewhere between P

and PSpace. Besides other well known classes such as NP and the polynomial-

time hierarchy PH we will take a closer look at UP and especially #P. The class

UP, which stands for unambiguous polynomial time, consists of all languages de-

cided by nondetermistic polynomial-time TMs which have either zero or one ac-

cepting computation path. It follows from the definition that P ⊆ UP ⊆ NP and

the inclusions are generally expected to be strict. The class #P uses polynomial-

time NTMs too, but is a class of functions with ranges in the natural numbers.

The output of a computation is exactly the number of accepting computation

paths.

Definition 1.1.

Let Σ be an alphabet. A function f : Σ∗ → N belongs to #P, iff there exists

a nondeterministic polynomial-time TM M such that for all inputs x ∈ Σ∗ the

number of accepting computation paths of M on x is exactly f(x).

A language L ⊆ Σ∗ belongs to UP, iff there exists #P-algorithm M which calcu-

lates the characteristic function of L. I.e., for all x ∈ Σ∗

M(x) =

{
1 x ∈ L

0 otherwise .
¦

The class #P will be of central interest later on in the shape of FP#P. One reason

for allowing this polynomial-time pre and postprocessing is that we have to handle

rationals when performing calculations with probabilities. As #P-algorithms can

only return naturals we have to use an appropriate encoding.

We use the corresponding class of languages P#P for comparisons between the

strength of FP#Pand other (better known) complexity classes. The notion of

reduction used for #P-hard problems is polynomial-time Turing reducibility, thus

a language is #P hard if and only if it is P#P hard. The following “map” shows

the situation between the classes mentioned above.

P ⊆ UP ⊆ NP ⊆ PH ⊆ P#P ⊆ PSpace
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It is currently not known which of the inclusions are strict. We will however take

a look at stronger results regarding the PH ⊆ P#P inclusion. In [20, 21] Toda

showed that PH ⊆ P#P [1]. A problem is in PC[n] if it is n-polynomial-time Turing

reducible to a problem in C, i.e. each computation is allowed to make at most

n oracle queries. Clearly polynomial-time Turing reducibility from problem A to

problem B is implied by n-polynomial-time Turing reducibility which in turn is

implied by polynomial-time many-one reducibility. In [15] Regan and Schwentick

give a special type of #P-oracle to be used in the PH ⊆ P#P [1] inclusion.

Theorem 1.2 (Regan, Schwentick). Let D be a problem in PH and q a poly-

nomial. Then there exists a #P-function f and a polynomial t such that for every

input x, n = |x|, the binary representation of f(x) has the form

{0, 1}∗ · 0q(n) ·D(x) · 0q(n) · {0, 1}t(n)

given as regular expression, where D(x) = 1 iff x ∈ D.

There exist a surprising variety of #P-complete problems. Primary candidates

are the counting versions of NP-complete problems. Take your favourite NP-

complete problem and ask for the number of solutions instead of simply checking

for the existence. Additionally there exist problems in P where the counting ver-

sion is #P-hard. For hardness results later on we will use a #P-hard problem,

where the decision problem is obviously trivial. In [23] Valiant showed the prob-

lem #Monotone 2-Sat to be #P-hard. Given a propositional formula α in

2-KNF without negation, the problem is to compute the number of truth assign-

ments to the variables occuring in α which let α evaluate to true. Of course every

monotone propositional formula is satisfiable by assigning true to all variables.

As we are interested in the data complexity of evaluating logics on databases,

we will make use of some well-known results from descriptive complexity theory.

For one, it can be easily shown that all first-order formulae can be evaluated in

polynomial time. Building on Fagin’s way-leading result about NPcorresponding

to existential second-order logic it has been shown that the class of all second-

order queries similarly captures the polynomial hierarchy.

Using these correspondencies we will freely change between these two paradigms.

For example when talking about polynomial-time queries, we mean any query

belonging to a class of queries which is polynomial-time computable. This case

includes besides FO also classes like DataLog and FO+LFP or FO+IFP. Note

that on ordered structures the latter two completely capture P.
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1.4 A Word on Probability

Although the subject of our interest builds on adding probabilities to databases

we require only very basic stochastical methods for our means. The probability

spaces considered will be finite and probability distributions can be assumed to be

given explicitly as probabilities of atomic events. We will use random variables,

their expectation and the linearity of expectation in some elementary calculations.

Lemma 1.3. Let Xi, i = 1, . . . , n be random variables with values in [0, 1] and

let ε, δ > 0. If for all i, 1 ≤ i ≤ n

Pr
[
Xi > ε/n

]
< δ/n,

then

Pr[
n∑

i=1

Xi > ε] < δ.

Proof: Simply note that

Pr[
n∑

i=1

Xi > ε] ≤ Pr[
n⋃

i=1

{Xi > ε/n}] ≤
n∑

i=1

Pr[Xi > ε/n]︸ ︷︷ ︸
< δ/n

< δ

The following lemma from [10] is about as complicated as it gets.

Lemma 1.4 (Karp, Luby). Let {Xi} be a sequence of independent identically

distributed random variables with values in [0, 1] and expectation

p := E(Xi) < 0.5. Then for all ε ∈ (0, 1),

Pr

[∣∣∣∣X1 + · · ·+ Xt

t
− p

∣∣∣∣ > ε · p
]

< 2 · e
(
−2ε2tp
9(1−p)

)
.

Remark 1.5. One global precondition throuthout this work is that, unless stated

otherwise, we assume all probabilities to be rationals. This is necessary in order to

perform calculations using the classical Turing machine model. Other machine

models like the BSS machine (Blum, Shub, Smale) or abstract state machines

which are capable of directly manipulating reals numbers are not considered.



Chapter 2

The Finite Case

2.1 First Approach: De Rougement’s Databases

2.1.1 Model

We will now introduce a first version of finite probabilistic databases, as discussed

by de Rougemont [16]. We will see that it is defined as a somewhat restricted

model, however proving sufficient as basis for all major definitions and some

important complexity results. The database vocabulary is restricted to the sig-

nature of graphs — one binary relation. We further allow the use of (a finite set

of) constants. Errors are only allowed in one direction: For each pair (x, y) ∈ E

there is a probability µ((x, y)) of (x, y) not belonging to E. On the other hand,

a pair of nodes not contained in E will not be in E in all possible databases.

Definition 2.1. A (finite) probabilistic database D is a pair (A, µ), where

• A is a finite σ structure with domain A and vocabulary σ = {E, c̄}; E is a

binary relation and c̄ is a sequence of constants,

• µ : E → [0, 1] is the error function, where all probabilities are assumed to

be independent. ¦

In the context of a probabilistic database D = (A, µ) we call A the given database.

The given database is used for all query evaluations. Together with the error func-

tion µ the given database induces a set of possible databases. A database B is

possible if it can be obtained by taking A and leaving out some of the edges. We

call the set of all possible databases ΩD. Our intuition is that the given database

may not be the actual database, which is the database containing the true edge

relation. The error function gives us probabilities for some changes to the given

9
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database. All possible databases are derivable from the given database by apply-

ing such changes, in our case letting out edges. So although not exactly knowing

the actual database, we do know that it is one of the possible databases. We can

now use µ to calculate the induced probability ν(B) of each B ∈ ΩD being the

actual database. It follows, that whenever we want to use the actual database, we

will have to use a random variable ranging over ΩD with (probability) distribu-

tion ν. The probability distribution ν over ΩD gives the probability of randomly

choosing each B ∈ ΩD as actual database. In the following we will often deal

with the probability space1 (ΩD, ν) induced by a probabilistic database D.

The distribution ν can be directly calculated from µ. We start with single prob-

abilities for single edges and then extend to whole databases. For atomic state-

ments β = Exy, the probability ν(β) of holding in a randomly chosen B ∈ ΩD is

0, if A 6|= β — we can not add edges. Else it is 1−µ((x, y)). Further, if β is a neg-

ative literal, then ¬β is atomic and ν(β) = 1− ν(¬β). As the error probabilities

of events β, β′, where β, β′ are literals built with distinct atoms, are independent,

the probability ν(B) of B being the acual database is easily calculable as

ν(B) =
∏

β∈Lit(B)

ν(β),

where Lit(B) is the set of all literals true in B.

Remark 2.2. The probability of any B ∈ ΩD depends on the probabilities of

the differences between B and A. Throughout this work we will use µ to denote

an error function giving the probability of a random event producing a value

differing from some given value. Conversely ν will always be the corresponding

probability function directly giving the probability distribution on the possible

events. As seen above, to calculate the ν-probability of an edge we need the

original value of the edge and the probability of that value changing.

We now have the means to define the expected error of a query. In the boolean

case, the expected error is defined naturally. In the general case, we take the

expected Hamming distance between the result on the given database and the

actual (i.e. real, but only probabilistically known) database. That is the expected

number of tuples where the two relations differ.

Definition 2.3. Fix a database D = (A, µ) and let B be a random variable

ranging over ΩD with probability distribution ν (as defined by µ).

1Due to our probability spaces being finite we omit the required σ-algebra. The reader may
take the discrete σ-algebra in all cases.
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• Let ψ be a boolean query. The expected error of ψ with respect to D,

Hψ(D), is the expectation E(ψA⊕ ψB).

• For k-ary queries ψ, the expected error Hψ(D) is defined as E(|ψA ∆ ψB|).

Here ⊕ denotes the bitwise exclusive-or and ∆ the corresponding operation on

sets, the symmetric difference: A∆B = (A\B) ∪ (B\A). ¦

The expected error is now used to calculate the reliability of a query.

Definition 2.4. The reliability or fault tolerance of a k-ary query ψ with respect

to D = (A, µ) with |A| = n is defined as

Rψ(D) = 1− Hψ(D)

nk
. ¦

Note that the reliability is always between 0 and 1. The bordercases, reliability

0 and 1 allow an intuitive interpretation: Reliability 1 expresses that a query

always yields the same result, regardless to which of the possible databases is

chosen. A reliability of 0 can only be obtained if the result is always exactly the

opposite as on the given database. Thus the given database must have probability

0. Although the practical intention is to take one of the most probable possible

databases as given, this is not mandatory and databases with zero probability

can be taken as the given database.

2.1.2 Results

De Rougements discussion of complexity issues of the reliability problem begins

with quantifier free formulae. In [16] it is proven that for quantifier-free queries

the reliability is polynomial-time computable. The claim that this is still true

for first-order queries must however be reverted as being highly unlikely. We

do not even need the full power of first-order logic to get #P-hardness of query

reliability.

Theorem 2.5. There exists a conjunctive query ϕ such that calculating the ex-

pected error Hϕ is #P-hard.

Proof: We will give a reduction from the problem #Monotone 2-Sat to the

problem of calculating the expected error for an explicitly given ϕ. As noted

earlier, #Monotone 2-Sat is #P-complete. The idea is to use the uniform

distribution over all truth assignments to the propositional variables to simulate

counting.
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Let α =
∧n

i=1 Yi ∨ Zi be a propositional formula in 2-KNF. We will now encode

the structure of α into a probabilistic database D = (A, µ), where

A = (A,E, a, f, l, r).

• The universe A is the (disjoint) union of

– the set V of all variables occuring in α,

– three copies of the set C of all clauses occuring in α: one is the set of

clauses C itself, one is the “left copy” Cl = {cl | c ∈ C} and one is the

“right copy” Cr = {cr | c ∈ C},
– four new elements a, f, l, r.

• The edge relation E is the (disjoint) union of

– {(a, c) | c ∈ C}, an edge from a to each clause,

– {(c, cX) | c ∈ C,X ∈ {l, r}}, an edge from each clause to the corre-

sponding left and right copies,

– {(cX , v) | c = (Y ∨Z) ∈ C, [X = l and v = Y ] or [X = r and v = Z]},
an edge joining the left resp. right copy of c with the left resp. right

variable of c,

– {(v, f) | v ∈ V }, an edge from each variable to f ,

– {(cX , X) | c ∈ C,X ∈ {l, r}}, edges to distinguish between cl and cr.

• The constants a, f, l, r are of course interpreted through elements a, f, l, r.

• The error function µ is defined as

µ((x, y)) =

{
1/2 x ∈ V is a variable and y = f

0 otherwise.

The intuitive meaning is that f stands for false. An edge connecting a variable

with f is to be interpreted as said variable being set to false. The set of all

possible truth assignments I = {I | I : Var(α) → {0, 1}} to the variables of

α is exactly represented by the set of all possible databases Ω = {BI | I ∈
I}. The distribution µ produces, as induced distribution ν on ΩD, the uniform

distribution. The edge relation in BI is defined such that an edge from a variable

v to f exists iff I(v) = false. Now consider the query

ϕ := ∃c∃y∃z∃cl∃cr

(Eac ∧ Eccl ∧ Eccr ∧ Ecly ∧ Ecrz ∧ Eyf ∧ Ezf ∧ Ecll ∧ Ecrr).
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Figure 2.1: Sketch of A

a

...
...

c C. . .

cll cr r Cl, Cr, {l, r}

{a}

{f}

Vy z

f

We ask for the existence of a c, which is forced to be a clause via the condition

Eac. Next we ask for y and z to be the variables of c, due to c connecting to y

and z through cl and cr. The conditions Eyf and Ezf ensure that both variables

are connected to f , i.e. set to false. The last two conditions ensure that we do

not choose one variable of c twice2. So ϕ is equivalent to the existence of a clause

in α where both variables are set to false. Consequently for each BI ∈ I, ϕ holds

in BI iff the truth assignment I does not satisfy α.

Now ϕ evaluates to true on the given database A, as all variables are set to false.

Under the uniform distribution the expected error of ϕ is exactly the fraction

of possible databases where ϕ evaluates to false, or equivalently the fraction of

truth assignments I ∈ I satisfying α.

De Rougement’s polynomial-time “proof” for the reliability of first-order queries

contains errors in the calculation of probabilities. At one point the probability

of the union of some events is calculated via the sum of probabilities. This is

of course only possible if the events are pairwise disjoint — which is not verified

and indeed not believed to be verifiable in this case. To illustrate this, imagine

asking for the existence of a 4-clique in a random graph of some size. Adding

up the probabilities for any 4 points to be a 4-clique is obviously not the way

to calculate the probability of the graph containing a 4-clique. Further, as many

of these 4 point sets will overlap, the probabilities are not independent either.

The normal inclusion-exclusion principle used to compute the probability of an

arbitrary union of events requires time exponential in the number of sets being

combined. Speaking informally, we will see that for quantifier-free formulae we

2Note that the case where only one variable occurs in c is handled correctly — the distinction
of cl and cr has no implications about the equality of y and z.
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can sit on top of the query and look outwards at the different possible databases.

Therefore it is permissible to only look at the parts of the database actually

occuring in the query. However this view does not generalize to first-order queries.

There it is necessary to take each of the exponentially many possible databases

and then look at the formula.

2.2 Second Approach: Relational Databases

2.2.1 Model

We will now consider a natural extension of the databases considered by de

Rougement. First we drop the restriction to graphs and allow any relational

structure (with constants) as database. We further allow the error function to

give positive probabilities to all atomic statements built with database relations

and elements of the underlying universe.

Definition 2.6. A (finite) probabilistic database D is a pair (A, µ̄), where

• A is a finite σ structure with domain A and vocabulary σ = {R̄, c̄};
R̄ is a finite sequence of relations and c̄ is a finite sequence of constants,

• µ̄ is a sequence of error functions containing for each Ri in R̄ a corresponding

µRi
: Aki 7→ [0, 1], where ki is the arity of Ri. Again all probabilities are

assumed to be independent. ¦

We also write µ(Rā) when we mean µR(ā). Now given a probabilistic database

D = (A, µ) the set of possible databases ΩD contains all databases sharing the

same universe, vocabulary and interpretation of constants. The two-sided errors,

probabilities for removing and adding tuples to relations, requires an adaption in

calculating the corresponding ν probabilities. Let R be a k-ary database relation

from D and ā a k-tuple in A. The probability ν(β) of the atom β = R(ā)

holding in a randomly chosen B ∈ ΩD is 1−µ(β), if A |= β and µ(β), otherwise.

This construction illustrates the difference between ν and µ as mentioned in

Remark 2.2. To calculate the absolute ν-probability of an atomic statement

holding in a randomly chosen database we need the given value of that atom

and the relative probability of that value changing as given by µ. As, again, all

probabilities are assumed independent, we can use the same method as in the

previous section to extend ν from atoms to give probabilities for databases.
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2.2.2 Results

Definitions 2.3 and 2.4 (expected error and reliability of a query) can be applied to

our new setting without changes. Clearly the database model used in the previous

section is a special case covered by Definition 2.6. It follows that the hardness

result of the previous section still applies. Starting again with quantifier-free

queries we now take a look at upper-bounds for the reliability problem.

Theorem 2.7. Let ψ be a quantifier-free query. Then the problem of calculating

the reliability Rψ is in P.

We defer the proof to the (even further) extended setting of Theorem 4.4 in

Chapter 4, as the differences in the proofs are negligible (and the model considered

there is again a true extension of the current version).

We already know that the reliability problem for conjunctive queries is FP#P-

hard. The following is one of the main results of this work. We show that

the scope of query languages for which the reliability problem is FP#P-complete

ranges from conjunctive queries up to second-order queries. This includes, among

many others, important classes such as DataLog, first-order and least-fixpoint

queries. The same method used in the proof here will be used again for a similar

result in Chapter 4, if reduced to a smaller class of queries.

Theorem 2.8. Let ψ be a second-order query. Then the problem of calculating

the reliability Rψ is in FP#P.

Proof: Let ψ(x̄) be a k-ary second order query. Since FP#P is closed under all

polynomial-time computable operations and

Rψ(D) = 1− 1

nk

∑
ā

Hψ(ā)(D)

we are done if we can prove that the expected error Hψ(D) is FP#P-computable

for Boolean queries. That is, for a given database D = (A, µ) we have to calculate

the expectation of the event ψA 6= ψB for randomly chosen B ∈ ΩD with a FP#P-

algorithm. In the following let ψ be a boolean query. The time bounds are with

respect to the size n of the representation of D.

First of all we evaluate ψ on A and store the result. Since SO = PH ⊆ FP#P this

is in FP#P. In the following computation of the expected error we will compare

this result against the results of evaluating ψ on all other possible databases. The

idea is to use the nondeterminism inherent to the #P-part of the computation to

create all possible databases in parallel. This is achieved by nondeterministically
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guessing a truth value for all atomic statements Rā, where R is a database relation

and ā a tuple of the same arity as R.

We further want the nondeterministic computation tree to reflect the probability

of each of the guessed databases. As our probabilities are rationals, we first have

to transform them into integers for our counting environment. There exists a

smallest positive integer g, such that ν(B) · g ∈ N for all B ∈ ΩD. We can

compute g in polynomial time. Start with the denominator of the first prob-

ability ν(Rā) given on the input Turing band — for simplicity we can assume

that the input has been duplicated replacing all µ probabilities by the induced ν

probabilities. Also all rationals are assumed to be stored in a normalized repre-

sentation. Then successively calculate the gcd b between the so-far result g′ and

the next denominator d. If b = d then d is a factor of g′ and we continue the

loop. Otherwise take g′ · d/b as g′ for the next round. In the end let g = g′.

This indeed yields the smallest possible g. According to the choice of g there

can be no g′ ≤ g which always produces an integer when multiplied with the

denominators of the probabilities. The existence of a g′ ≤ g which always pro-

duces integers when multiplied with the probabilities themselves would imply the

existence of a factor h > 1 occuring in all numerators. Since g′ | g this contra-

dicts the fact that all probabilities were assumed to be given in a normalized

representation.

After guessing a database B we calculate mB := ν(B)·g and nondeterministically

split the computation mB times. In the resulting computation tree, for each

possible database B there are exactly mB leafs which “see” B as database. We

will now first consider the case where ψ is polynomial-time evaluable. Each

computation branch evaluates ψ on the database B it sees. Then ψA and ψB are

compared. In case the two values coincide, the contribution towards the expected

difference is 0 and the computation rejects. If on the other hand the values differ,

the computation accepts. Conclusively, for each database B there are accepting

computation paths, namely exactly mB, iff ψA 6= ψB. In symbols, the number of

accepting computation paths is∑
B∈ΩD

ν(B) · g · (ψA⊕ ψB) = Hψ(D) · g.

Hence dividing the result of the nondeterministic part divided by g yields the

desired expected error.

If ψ is more complicated3, i.e. in PH but not in P, we have to use Theorem 1.2

in order to evaluate ψ. Recall that according to 1.2 we can arbitrarily choose a

3Assuming P ( PH.
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polynomial q(n), such that there exists a #P-function f and a polynomial t(n),

where the output bit telling us whether the input satisfies ψ is padded by q(n)

zero bits in either direction. If we can choose q in a way that q(n) is always

greater than the length of the binary representation of the number l of leafs in

the computation tree above, we can directly extract Hψ(D) · g from the result

of the nondeterministic part, as in the simple case. Simply discard the lower

(t(n) + q(n)) bits, take the (new) lower (q(n) + 1) bits as result and discard all

higher-order bits.

Finding a polynomial upper-bound for l is no problem. The first part of the

nondeterministic computation splits once for each atomic statement in A; take n

as upper bound. The second part splits ν(B) · g times, where ν(B) ≤ 1 for all

B and g is polynomial in n. Hence q(n) := n + g is a legal choice.



Chapter 3

Approximating Query Reliability

3.1 Using an FPTRAS

3.1.1 Preliminaries

We have seen, that even when restricted to the very limited class of conjunctive

queries, the reliability problem is already FP#P-hard. One possible way out of

this class of (as far as we know) not efficiently computable functions is to relax the

high standards we expect from our reliability calculation. The idea is to find an

efficient algorithm approximating the desired result upto some acceptably small

error. Considerable research on the approximability of #P functions has already

been conducted (e.g. [17, 10]) with mixed results. It has been shown that some

#P-hard problems are and some are not approximable in the sense introduced

below. There are of course many ways to precisely define what approximating

a function is to mean, e.g. regarding the allowed error of the approximation

results. Here we will give the definition of and later use a rather strong notion

of approximability as generally employed in the context of #P problems. We

will unfortunately reach the limits of this kind of approximabiliy rather soon and

have to then continue with a more relaxed approach.

Definition 3.1. Let f : dom(f) −→ Q be a function with values in some nu-

merical domain, e.g. Q = N or Q. Let A be a randomized algorithm taking

two positive rationals ε, δ and an element x ∈ dom(f) as input. We call A a

polynomial-time randomized (ε, δ)-approximation algorithm for f iff there exists

a polynomial p(n) such that for some fixed ε, δ > 0 and all x ∈ dom(f)

Pr [|A(x)− f(x)| > ε · f(x)] < δ and (3.1)

TIMEA(x) ≤ p(|x|). (3.2)

18



CHAPTER 3. APPROXIMATING QUERY RELIABILITY 19

If (3.1) holds for all ε, δ > 0 and in addition there exists a polynomial p(x, y, z)

such that A satisfies not only (3.2), but also

TIMEA(x, ε, δ) ≤ q(|x|, 1/ε, 1/δ), (3.3)

then we call A a fully polynomial-time randomized approximation scheme, or

FPTRAS for short. ¦

Using an FPTRAS is a strong idea of approximation in the sense that it enables

us to efficiently approximate a given function with values which, with arbitrarily

high probability, lie arbitrarily close to the real value.

It is known that a number of #P-complete functions admit an FPTRAS. We will

show that this is also the case for the probabilities of existential queries.

We proceed as follows: We will reduce the problem of calculating the probability

of an existential query to the problem of calculating the probability that a given

propositional formula in k DNF is true given a probability for each of its variables.

For this problem, we can show the existence of an FPTRAS using a result of Karp

and Luby [10].

From an FPTRAS for the probabilities of existential sentences we obtain a slightly

weaker notion of approximability for the reliability of any existential or universal

query. This weaker version is sufficient for most practical purposes. We then

discuss why it cannot be strengthened to an FPTRAS for reliability.

Definition 3.2. Let C be a class of propositional formulae. Then #C is the

corresponding counting problem and Prob-C is the corresponding probability

problem:

• #C: Given a formula ϕ ∈ C, calculate the number of assignments (to the

variables in ϕ) that make ϕ true.

• Prob-C: Given a propositional formula ϕ ∈ C, and a probability function

ν that assigns to each variable X of ϕ a probability ν(X) = Pr[X = 1],

calculate the induced probability ν(ϕ) of ϕ being true. ¦

In the following we are interested in DNF, the class of propositional formulae

in disjunctive normal form, and k DNF, the class of DNF-formulae where each

disjunct has at most k literals.

Theorem 3.3 (Karp, Luby). The problem # DNF admits an FPTRAS.

We use this theorem to derive a similar result for the problems Prob-k DNF.

Remember that one global precondition is the restriction to rational error prob-

abilities.
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Theorem 3.4. For all k ∈ N, the problem Prob-k DNF admits an FPTRAS.

Proof: Let ϕ be a kDNF formula and let ν : {X1, . . . , Xm} → [0, 1] be a

probability function on the variables of ϕ. We will transform (ϕ, ν) into an

appropriate instance ϕ′′ for #DNF.

For each variable X of ϕ, with probability ν(X) = p/q we introduce new propo-

sitional variables Ȳ = Y`−1, . . . , Y0, where ` = len(q), the length of the shortest

binary representation of q. We write val(Ȳ ) for the natural number with binary

representation Ȳ .

We first note that for every b ∈ N and ` ≥ len(b), we can efficiently construct

DNF-formulae of length O(`2) expressing “val(Ȳ ) < b” and “val(Ȳ ) ≥ b”, respec-

tively. Indeed, if b`−1 · · · b0 represents b in binary then “val(Ȳ ) < b” is expressed

by ∨
i<`
bi=1

(
¬Yi ∧

∧
i<j<`
bj=0

¬Yj

)
.

The formula for “val(Ȳ ) ≥ b” is similar.

We now replace in ϕ every occurence of the literal X by the formula “val(Ȳ ) < p”

and every occurrence of ¬Xi by “val(Ȳ ) ≥ p”. This operation is performed for

all variables X of ϕ (taking a sequence of fresh variables Ȳ for each X) and the

resulting formula is transformed into DNF to obtain ϕ′. Note that this process

may increase the length of ϕ′ exponentially in k, but (since the original formula

is in kDNF) only polynomially in the length of ϕ and in the number of bits used

for the probabilities.

In the case that all probabilities ν(X) are dyadic rationals, i.e. of the form

p/2`, we are done. Indeed, for each variable X of the original formula ϕ, we

have ` variables Ȳ ; there are p assignments satisfying the formula “val(Ȳ ) < p”

corresponding to the literal X, and 2` − p assignments satisfying “val(Ȳ ) ≥ p”

corresponding to the literal ¬X. Hence the probability ν(ϕ) is just number of

assignments satisfying ϕ′ divided by the total number of assignments.

However, if the denominators of the probabilities ν(X) are not powers of two,

this is no longer the case. Consider the case that ν(X) = p/q with q < 2`.

We still have p assignments satisfying the formula “val(Ȳ ) < p” (corresponding

to X) and 2` − p assignments satisfying “val(Ȳ ) ≥ p” (corresponding to ¬X).

However, we should have only q − p < 2` − p assignments corresponding to ¬X.

Call an assignments to Ȳ illegal if it satisfies the formula “val(Ȳ ) ≥ q”. The

probability ν(ϕ) is the number of legal assignments satisfying ϕ′ divided by the

total number of legal assignments. We can easily calculate the total number of
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legal assignments (the product of all denominators of the probabilities ν(X)) and

hence the total number of illegal assignments. To determine the number of legal

assignments satisfying ϕ′, we transform ϕ′ into a new formula ϕ′′ that is implied

by ϕ′ and, in addition, is satisfied by all illegal assignments. For instance, we can

take for ϕ′′ the disjunction of ϕ′ with the formulae “val(Ȳ ) ≥ q” for all sequences

Ȳ that we have introduced for the variables of ϕ. Clearly ϕ′′ is in DNF and can

be constructed in polynomial time.

The number of legal assignments satisfying ϕ′ is the number of all assignments

satisfying ϕ′′ minus the total number of illegal assigments. Hence, by using the

FPTRAS of Karp and Luby for #DNF to approximate the number of assignments

for ϕ′′, we get an FPTRAS for calculating ν(ϕ).

3.1.2 Results

We are now in a position to prove our first approximability result. We will

then discuss why we restrict ourselves to existential and universal queries. After

introducing our weaker sense of approximation we will give a result regarding a

larger class of queries.

Theorem 3.5. Let ψ be any boolean existential query. Then the probability ν(ψ)

(that ψ holds in the actual database) admits an FPTRAS.

Proof: Let ψ = ∃ȳϕ(ȳ) be an existential query, where ϕ is quantifier-free and in

kDNF, for some k ∈ N.

Given a probabilistic database D = (A, µ) with n elements, we first calculate

the probabilities ν(α) for all atomic statements α on A. We then replace the

quantifiers in ψ by disjunctions over all possible values:

ψ(x̄) = ∃ȳϕ(x̄, ȳ) 7−→
∨
b̄

ϕ(x̄, b̄) =: ψ′(x̄).

Now we let ψ′′ be the propositional formula obtained from ψ′ by replacing equal-

ities by their truth values and considering atomic statements Rc̄ as propositional

variables. Note that the number of variables per conjunction does not depend on

the size of D, so ψ′′ is a propositional formula in kDNF whose length is polynomial

in n, and the function ν defines probabilities for the variables of ψ′′. Obviously

ν(ψ′′) is just the expectation that ψ holds in a randomly chosen B ∈ ΩD. By

Theorem 3.4 we have an FPTRAS for calculating ν(ψ′′).

Theorem 3.5 implies that the reliability of existential and universal queries can

be approximated in the following sense.
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Corollary 3.6. Let ψ be an existential or a universal query. Then there exists

a polynomial-time randomized algorithm M such that for all unreliable databases

D and all ε, δ > 0

Pr[|Rψ(D)−M(D)| > ε] < δ.

Proof: If ψ is an existential or universal Boolean query this is immediate from

Theorem 3.5, since for every database D = (A, µ) either Hψ = Hψ(D) = ν(ψ)

and Rψ = 1− ν(ψ) or vice versa, depending on whether ψ holds in A, or not (cf.

Definitions 2.3 and 2.4).

For k-ary queries with k > 0, we can use Lemma 1.3 and approximate Hψ by

taking the sum of appropriate approximations of the Hψ[ā] (with error ε/nk and

probability δ/nk) for Hψ[ā] over all k-tuples ā. Since Rψ = 1−Hψ/nk this gives

the desired result.

The notion of approximability used in Corollary 3.6 is technically weaker than

the existence of an FPTRAS, since ε bounds the absolute rather than the relative

difference of M(D) and Rψ(D) (and both values are between zero and one). In

practice, this weaker notion may be sufficient: The user of a database system

will be content to know the reliability up to some very small absolute error, even

if the actual value is very close to 0 (and we cannot say anything about the

relative error). We call such an algorithm a weak polynomial-time randomized

approximation scheme, or WPTRAS. Formally the definition for a WPTRAS

can be derived from an FPTRAS (cf. Definition 3.1) by replacing (3.1) by

Pr [|A(x)− f(x)| > ε] < δ . (3.4)

Of course we will only keep this “second best” result, if we believe it impossible

to strengthen the claim of 3.6 to use an FPTRAS. We will now take a look at the

associated decision problem. The following will show that we have most probably

already reached the borders of approximability via FPTRAS’.

Definition 3.7. Fix any query ψ. Let ARψ be the set of all unreliable databases

D where Rψ(D) = 1. We call determining whether a given D belongs to ARψ

the absolute reliability problem. ¦
Lemma 3.8.

• Let ψ be a quantifier free query. Then ARψ ∈ P.

• Let ψ be a polynomial-time evaluable query. Then ARψ ∈ Co-NP.
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The proofs are simple: In the first case Rψ is computable in polynomial time.

In the second case guess a database B and check whether the truth values ψA

and ψB differ. For our further observations we take a closer look at existential

queries.

Lemma 3.9. There exist existential queries ψ such that ARψ is Co-NP-hard.

Proof: We reduce the problem of 4-colourability of graphs to the complement

of ARψ for some existential query ψ.

Besides the edge relation E we let our language contain two unary relations R1

and R2, together giving one of 4 colours for each node. Now consider the query

ψ = ∃x∃y(Exy ∧ (R1x ↔ R1y) ∧ (R2x ↔ R2y) ∧ x 6= y)

expressing that two connected nodes share the same color, i.e. that R1, R2 do

not represent a correct 4-colouring.

Given an arbitrary graph G = (V,E) we now construct a database D = (A, µ).

The universe V and graph relation E are taken unchanged. For our given

database A we let R1, R2 = ∅, giving all nodes the same colour. The error

function µ is such that µ(Euv) = 0 and µ(Riv) = 1/2 for all nodes u, v ∈ V ,

i = 1, 2. Note1 that A |= ψ. For this construction the existence of a 4-colouring

for G is equivalent to D 6∈ ARψ.

For our existential non-4-colouring query ψ we can approximate the reliability

Rψ, however we do not know how to approximate the expected error Hψ. A

simple observation shows that the existence of an FPTRAS for the reliability of

all existential queries without precondition for D (and hence the approximability

of both Hϕ and Rϕ for all existential or universal queries ϕ) is highly unlikely.

Lemma 3.10. Let f be any function such that the associated decision problem

{x : f(x) > 0} is NP-hard. If, for some ε, δ < 1/2, f admits a randomized

polynomial-time (ε, δ)-approximation algorithm, then NP ⊆ BPP.

Proof: Let f , ε and δ be as required above and let A(x) be such an approximation

algorithm for f . We then have Pr[|f(x)−A(x)| > ε · f(x)] < δ. Now if f(x) = 0,

the probability of A(x) > 0 is less than δ. Conversely if f(x) > 0, the probability

of A(x) differing from f(x) by more than f(x) · ε < f(x)/2, and hence of A(x)

being zero, is less than δ. As δ < 1/2 we are done.

Note that the decision problem associated with the expected error Hψ is the

complement of the absolute reliability problem ARψ. Hence there exist existential

queries (such as the non-4-colouring query) whose expected error does not admit

an FPTRAS, unless NP ⊆ BPP.
1Quietly ignoring the case where E = ∅ or |V | < 2.
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3.2 Using a WPTRAS

3.2.1 Results

As we cannot expect any positive results using an FPTRAS for reliability calcu-

lations we take a look back at Corollary 3.6. Relaxing our bound on the allowed

error gave us a positive, if weaker, approximability result, a WPTRAS for the

reliability of existential and universal queries. We will now derive a similar result

for all polynomial-time evaluable queries. The proof is based on methods used in

[10] for the development of an FPTRAS for #DNF. We will make some modifica-

tions in order to obtain a result for all polynomial-time evaluable queries. Some

of these modifications destroy the bounds necessary for an FPTRAS, but what

is left over turns out to be sufficient for a WPTRAS.

Theorem 3.11. Let ψ be a polynomial-time evaluable query. Then there exists a

polynomial-time randomized algorithm M such that for all probabilistic databases

D and ε, δ > 0

Pr[|Rψ(D)−M(D)| > ε] < δ.

Proof: The proof is based on methods used by Karp and Luby in [10] for con-

structing an FPTRAS for #DNF.

In case ψ is not a Boolean query we use the same idea as in the proof of Lemma 3.6

and approximate the query reliability using the sum over all approximations for

each possible valuation of the free variables, alas with stricter bounds.

For the following let ψ be a polynomial-time evaluable Boolean query and let2

ξ ∈ (0, 1/2) be a rational.

Let D = (A, µ) be a probabilistic database and ε, δ > 0. We first have to slightliy

modify D and ψ. Let R be a new unary relation and let c, d be two new constants.

We define a new database D′ = (A′, µ′) and query ψ′, where

• A′ = (A, R, c, d) with R = ∅ and c 6= d,

• µ′(P ā) =

{
ξ if P = R and ā = c or ā = d,

µ(P ā) otherwise,

• ψ′ = (ψ ∨Rc) ∧Rd.

2It is crucial that ξ can be chosen prior to knowing any one of D, ε or δ.
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Now let B’ be a random variable taking values in ΩD′ with distribution ν ′ as

induced by µ′. We define a random variable X through X = ψB′
and let {Xi}i>0

be a sequence of independent identically distributed random variables where each

Xi is distributed as X. It follows that for p := E(X) = ν ′(ψ′) we have

0 < ξ2 ≤ p ≤ ξ < 1/2.

For the upper bound of p note that on top-level ψ′ contains a conjunction with

the atom Rd. Since R is empty in A, ν ′(Rd) = µ′(Rd) = ξ. It follows that

p = q · ξ for some 0 ≤ q ≤ 1. For the lower bound note that ψ′ is true if Rc and

Rd hold. For the number of repetitions in Lemma 1.4 we let

t = t(ε, δ) =

⌈
9

2 ξ ε2
ln

1

δ

⌉
.

Due to ξ being fixed, t is bounded by a polynomial in 1
ε

and 1
δ
. Further the Xi are

polynomial-time computable, too. It follows that our approximator X̃ = X1+···+Xt

t

is polynomial-time computable. The modifications of D and ψ lead to our Xi

satisfying the preconditions of Lemma 1.4. A few simple transformations on the

probability bound in the result of Lemma 1.4 show that for our choice of t we get

Pr

[∣∣∣∣X1 + · · ·+ Xt

t
− p

∣∣∣∣ > ε · p
]

< δ. (3.5)

It follows from our construction that

ν(ψ) =
(p− ξ2)

(ξ − ξ2)
, (3.6)

hence using

α =
(X̃ − ξ2)

(ξ − ξ2)
(3.7)

as approximation for ν(ψ) satisfies

Pr [|α− ν(ψ)| > 2 · ε] < δ. (3.8)

To see why (3.8) holds, first note that ξ < 0.5 and therefore

ξ2

ξ − ξ2
< 1 . (3.9)
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We use (3.6) and (3.7) to substitute X̃ and p in (3.5) and obtain

Pr[|(ξ − ξ2)(α− ν(ψ)| > ε · (ξ2 + (ξ − ξ2)ν(ψ)] < δ ,

or equivalently

Pr

[∣∣α− ν(ψ)
∣∣ > ε ·

(
ξ

ξ − ξ2
+ ν(ψ)

)]
< δ .

Due to (3.9) and ν(ψ) < 1 we are done.

Together with above observations that the Xi are polynomial-time computable

and that t bounded by a polynomial in 1
ε

(and hence in 2
ε
) and 1

δ
, (3.8) shows that

our approximator is indeed a WPTRAS. Given an ε as allowed error we simply

use ε/2 in our algorithm.



Chapter 4

The Metafinite Case

4.1 Metafinite Structures

The database models considered so far are limited in that they are completely

finite. In practical applications it is often necessary to deal with infinite domains,

e.g. when storing numbers or strings. Also these domains are often used as more

than plain sets, e.g. by adding arithmetic operations. We will use parts of the

framewok of metafinite model theory as presented in [6] to add an infinite part to

our databases in a way that preserves some complexity results. Let us now take

a closer look at a special case of metafinite algebras to be used as databases, and

so-called multiset operations which will be used as aggregate functions.

We restrict ourselves to so-called numerical structures for the potentially infinite

part of our metafinite construction. Omitting an exact definition of what a nu-

merical structure is, we may get an intuition by thinking of typical examples like

the ordered field of reals, the field of rationals or the naturals with arithmetic.

Finite domains are permitted, but we require at least two distinct elements to

interpret two mandatory constants, 0 and 1. We further want all operations

to be efficiently computable, i.e. in polynomial time. Without imposing such

a limit we are unable to keep the precondition of all first-order queries being

polynomial-time evaluable.

Definition 4.1. Let A be a finite set and let R be a numerical structure. Further

let F be a finite set of functions f : Ak → R. Then the triple A = (A,R,F) is a

metafinite algebra. We call A the primary part and R the secondary part of A.

¦

The interesting part is how logical formulae and terms are built with respect

to the two domains. We allow our logics to use a countable set of variables V .

27
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Now let σR denote the vocabulary of R. The variables in V only take values in

A. Terms on the other hand only take values in R. Atomic terms are obtained

by applying functions1 in F to variables. Hence atomic terms perform the step

from the primary domain to the secondary domain. Further the set of terms is

closed under application of functions in σR. Anything built differently is not a

term. Note that like relations in the classical setting, functions from F can not

be nested. In case we allow constants over the primary part they are of course

handled just like variables when building terms.

Atomic formulae are built (as usual) using equations between variables or2 terms

and by applying relations in σR to terms. The two explicitly given elements 0

and 1 are needed for the characteristic function operator χ. Just as relations

perform the step from terms, which live in an underlying domain, into the world

of true and false in the classical setting, this operator performs the step in the

other direction. If ϕ is a formula, then χ[ϕ] is a term with the same free variables

as ϕ and the canonical semantics:

χ[ϕ]A(ā) =

{
1 if A |= ϕ(ā)

0 otherwise.

Up to this point we have only allowed atomic formulae. We define quantifier-free,

first-order and second-order expressions by allowing the corresponding junctors

and quantifiers in the construction of (sub)formulae. The top-level symbol of an

expression decides whether it is a formula or a term, i.e. whether it yields a truth

value or a numerical value, regardless of the nesting of terms and formulae made

possible by the characteristic function operator.

The core of what distinguishes metafinite structures from infinite ones is the re-

stricted quantification. First- and second-order variables both live in the primary

part, so all quantifiers range over a finite set. One advantage of this approach

is that queries can still be effectively evaluated. A further gain is with respect

to the use of functions and aggregate operators. When dealing with infinite nu-

merical domains in databases, normally a finite subset, the active domain which

contains all elements explicitly named in the presentation of the database, is used

for query evaluation. If, however, a query contains aggregates like sum or avg or

even simple operations like addition, the result will generally not be in the active

domain, unless it is closed under such operations. This is unlikely, as the ac-

tive domain is introduced as finite subset containing all query-relevant constants.

1Correctly: function symbols. As often the case — indeed in this work too — we know that
there is a difference between a function symbol and an actual function, only to never make this
distinction explicit once we are past the introductary level.

2Note that variables and terms take values in distinct domains and are hence incomparable.
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The only case where we need a kind of active domain is to find finite ranges for

second-order quantifiers. All first-order constructions go through without active

domains and as will be seen the question of results leaving the active domain

does not arise.

Let us take a closer look at multiset operations. A multiset operator behaves

partly like a quantifier, in that it binds one or more variables. It also acts like

a function, as it is applied to terms and again produces a term. Of course it is

more general than both, as it maps finite multisets to numbers, i.e. members of

the secondary part, and can be used to simulate both quantifiers and functions.

We now give an exact definition of how such an operator works.

Syntax: Let Γ be a multiset operator. Further let t(x̄, ȳ) be a term and ϕ(x̄, ȳ)

a formula. Then the expression

Γx̄(t(x̄, ȳ) : ϕ(x̄, ȳ))(ȳ)

is a term with free variables ȳ.

Semantics: Let s(ȳ) = Γx̄(t(x̄, ȳ) : ϕ(x̄, ȳ))(ȳ) be a term to be interpreted in

A = (A,R,F) with σs ⊆ σR. With valuation b̄ for ȳ the value of s is defined as

sA(b̄) := ΓA
({{tA(ā, b̄) | ā ∈ Ak,A |= ϕ(ā, b̄)}})

Formally the vocabulary σR of a structure R with multiset operations is extended

to include these operators — besides the function and relation symbols. Now

just as quantifiers come in a first-order and a second-order version the same

is true for multiset operators. The extension is straightforward. Take a new

sequence of second-order variables, or relation symbols P̄ and a multiset operator

Ξ. Then ΞP̄ (t(ȳ) : ϕ(ȳ))(ȳ) is a term, where the formula ϕ and the term t may

contain relations from P̄ . Said term is interpreted as Ξ
({{tA(b̄) | Pi ⊆ Aki , Pi ∈

P̄ , (A, P̄ ) |= ϕ(b̄)}}), where ki is the arity of Pi and b̄ a valuation for the free

variables ȳ.

The multiset operations considered later on will be some of the prominent aggre-

gates used in SQL: min, max and sum. If desired, this enables us to eliminate all

quantifiers by replacing them with aggregates. For example

∃x ϕ(x) =̂ (1 = max
x

χ[ϕ(x)])

and similarly

∀x ϕ(x) =̂ (1 = min
x

χ[ϕ(x)]).
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4.2 Third Approach: Integrating Probability In-

formation

The first application of this new framework is to move the probability information

into the database. This brings several advantages. Until now the error function

was merely an add-on to the well developed framework of relational databases.

We can now take e.g. the rationals as secondary part of our finite database and

let the probability functions be a part of the database proper. This also allows

the study of definability questions in a well defined surrounding. This is a more

natural approach in the sense that query languages are commonly given as logics,

not as complexity classes. Hence it is more fitting to see which query language

has the power to express the reliability of a query as query again.

The embedding of Definition 2.6 into a metafinite structure is straightforward.

Given a database (A, µ̄) we take A as primary part. The secondary part has to en-

compass everything needed for reliability calculations. Take (Q, +,−, ·, /, 1, 0,≤
,
∑

), the ordered field of rationals with summation as aggregate. Now µ̄ is a

sequence of weight functions. Again for each database relation R ⊆ Ak we have

an error function µR : Ak −→ Q giving the probability of all atoms Rā differing

in the given and a randomly chosen database.

The reader will notice, that contrary to the definition of a metafinite algebra, the

primary part is an interpreted structure containing relations instead of merely

a plain set. In [6] a metafinite algebra where the primary part is an arbitrary

structure is called a metafinite structure. We can get around these (in our simpli-

fied setting) disturbing relations by changing the relations to functions mapping

tuples to 0, 1 ⊆ Q. We can then use the supplied operations to simulate logical

operators. This idea of using functions into the secondary part as database will

be generalized in the next section.

An interesting definability result in [6] is the following.

Theorem 4.2 (Grädel, Gurevich). Let ψ be a quantifier-free query. Then the

reliability of ψ is first-order definable.

This strengthens our earlier result about reliability being polynomial-time com-

putable for quantifier-free queries. Note that this and all further definability

results apply equally when using real probabilities. The reader may exemplary

look at the proof of Lemma 4.8. Since we are interested in complexity theoretic

results about query reliability, we will however not pursue this path of taking the

ordered real field as secondary part.
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4.3 Fourth Approach: Functional Databases

4.3.1 Model

Now it is time to leave the relational model behind and use the new possibilities

of our metafinite setting for the databases themselves. The idea is to replace

the database relations by database functions. Relations can of course be seen as

functions too, mapping tuples to truth values. Now we let database functions

range into the secondary part of our metafinite structures. The domain in this

case is the finite primary part.

This extension also leads to a new view about the facts contained in a database.

When looking at a relational structure, we can pick a relation and speak of a

given tuple either belonging to the relation — or not. In the functional case the

question is not whether a tuple belongs to a function3, but rather what the value

of the tuple is, under said function. We could of course take the freedom to state

that, by convention, for a certain element nil of the secondary part, any tuple

being mapped to nil “does not belong to the (corresponding) function”. This

idea will not be pursued.

Definition 4.3. A probabilistic functional database D is a tuple (A, ν), where

• A is a metafinite algebra (A,R,F), where A is a finite set, R is a numerical

structure and F is a set of functions of the form f : Ak → R,

• ν is the probability function. For each f ∈ F and ā ∈ dom(f), νf(ā) is

a probability distribution on R where νf(ā)(r) = νf (ā, r) = ν(f(ā) = r)

is the probability of the value of f(ā) being r ∈ R. Again all probability

distributions are assumed to be independent.

Further each distribution νf(ā) may only contain finitely many non-zero

probabilities, i.e. {r ∈ R | νf(ā)(r) > 0} is finite for all f and ā. ¦

The database relations are replaced by database functions with values in R. In-

stead of one alternative truth value for each atomic statement we now have a

whole set of possible alternatives — those given by a positive probability. Conse-

quently queries are terms and query results are functions from the primary into

the secondary part. Insofar this model is “closed” just as the relational case:

adding a query result to a database yields another database.

The relational case can easily be embedded into the functional model by setting

R to ({0, 1},∧,¬, 0, 1). The functions in F then take values in {0, 1}, effectively

degraded to relations.
3We do not allow partial functions.



CHAPTER 4. THE METAFINITE CASE 32

To make this point clear: In the following all queries are terms. These terms may

be built using formulae in combination with the characteristic function operator.

A query is quantifier-free, if no aggregates or quantifiers are used. A query is

first-order, if only first-order aggregates and quantifiers are used. A second-order

query may use any first and second-order aggregation and quantification.

Now second-order quantification is not as straightforward as in the usual finite

setting. As we are dealing with functions instead of relations, a k-ary second-

order variable has to be interpreted as a k-ary function from the primary into the

secondary part of the database. In case the secondary part is infinite, we can no

longer enumerate all possibilities. We now introduce our version of active domain

/ active domain semantics. An element s of the secondary part belongs to the

active domain adiff there exists a tuple ā in the primary part and a database

function f such that f(ā) = s. The scope of all second-order operations is the

set of functions with ranges in the active domain, i.e. functions of the kind

g : Ak → ad. This definition is canonical in the sense that it is the most simple

version providing the expressive power required for definability issues of qurey

reliability in the setup of metafinite databases.

4.3.2 Results

In the following we will explicitly consider two variants for the secondary part:

The standard arithmetic over the naturals and the field of rationals, both with

order. As second-order aggregates we allow sum, min and max. With an eye

to the practicability of our results we wish our computations to (at least) stay

within PSpace. Therefore we do not allow a second-order multiplication aggre-

gate, as the results will generally require exponential space. Regarding first-order

operations we have the freedom to allow multiplication and many other common

operationas, as long as they are computable in deterministic polynomial-time —

we wish first-order queries to be polynomial-time evaluable.

Theorem 4.4. Let ψ be a quantifier-free query. Then for any probabilistic func-

tional database D the problem of calculating the reliability Rψ(D) is in FP.

Proof: Let ψ be a k-ary quantifier-free query. Due to the linearity of expectation

we can swap expectation and summation. Hence it suffices to show that Hψ(ā)

can be calculated in polynomial-time for any tuple ā. The claim then follows due

to Rψ = 1− 1
|A|k

∑
Hψ[ā].

So let D = (A, µ) be a probabilistic functional database and ā ∈ Ak. Now imagine

evaluating ψ[ā] on different databases from ΩD. The result depends not on the

whole database, but rather on the value of the atoms occuring in ψ[ā] only. Hence
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it is not necessary to generate all possible databases; we merely have to look at

all alternative values (and their probabilities) for these occuring atoms.

The algorithm proceeds as follows. First ψ[ā] is evaluated and the result ψ[ā]A

stored for later comparisons. Then for the atoms in ψ[ā] all possible combina-

tions of values4 with positive probability are generated. Next ψ[ā] is evaluated

using these values. If the result differs from ψ[ā], the probability for the current

valuation of the atoms is added as contribution towards the end result Hψ[ā].

Although generating all possible valuations for the atoms is exponential in the

number of atoms occuring in ψ, the algorithm is still polynomial in the size of D.

Note that ψ is fixed, so the number of atoms does not change. If the primary part

of the database grows, the number of tuples, and thus the repetitions of above

algorithm, grows polynomially (in the exponentiation describing the number of

valuations for the atoms, the base depends only on the database and the power

only on the query). Calculating the probability for each given valuation is now

easy. As all probabilities are independent all we have to do is multiply the

probabilities of each of the current values.

Theorem 4.5. Let ψ be a first-order evaluable query. Then the problem of cal-

culating the reliability Rψ(D) is in FP#P.

The proof uses the same methods as the first-order part of Theorem 2.8. Also

the claim can be strengthened to include all UP evaluable queries. However we

do not have a result similar to Theorem 1.2 for the metafinite case allowing us

to compute second-order query reliabilty in the same way.

The following results will lead us to a complexity class not encountered so far, the

counting hierarchy, or CH. We will give an intuitive definition of CH, using PH

as guideline. Think of PH as the class of all problems solvable by a polynomial-

time bounded algorithm with a fixed, finite amount of nested NP / Co-NP oracle

queries. The class CH is defined similarly, with the addition that the nested

oracles can also include #P functions. Hence a function is in FPCH iff it is

computable by a polynomial-time algorithm which may invoke either a NP, a

Co-NPor a #P oracle which in turn may again invoke an oracle of one of these

three kinds etc. The number of oracle invocations and the oracles themselves are

fixed. Obviously the situation is

FP#P ⊆ FPCH ⊆ PSpace.

For all definability issues we have to be able to express probabilities in our logical

framework. This can be achieved by letting the secondary part of our databases
4This proceeding is in analogy to interpreting the atoms as propositional variables in the

relational case.
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be the field of rationals (with summation as aggregate operator). The errors can

then be put into weight functions as in the previous section. We can then think

of the primary part containing a copy of the active domain, or, equivalently, let

the error functions be of the kind νf : Ak×ad −→ R. There are other conceivable

possibilities, but for all further means we will stick to this solution.

In order to not let results of numerical queries explode to much we have already

forbidden the use of a second-order multiplication aggregate. It turns out that

we require a rather technical restriction regarding the applictaion of second-order

addition aggregates.

Definition 4.6. Let ψ be a second-order query. We call ψ (addition) restricted

iff. the result of any division occuring in the scope of a second-order addition ag-

gregate is independent of all second-order variables used in second-order addition

aggregation. ¦
Theorem 4.7. Let ψ be a restricted second-order query. Then the problem of

calculating the reliability of ψ is in FPCH.

We will give the proof of 4.7 in two steps. First we show that the reliabilty

of second-order queries is second-order definable. Next we show second-order

queries to be FPCH evaluable. Note that the precondition of the query being

addition restricted is not needed for the first step.

Lemma 4.8. Let ψ be a second-order query. Then the reliability Rψ is second-

order definable.

Proof: Let ψ be a k-ary second-order query and let D be a functional database.

As we know by now,

Rψ(D) = 1− Hψ(D)

|A|k and Hψ(D) =
∑

ā

Hψ[ā](D).

We will show how to stepwise construct a second-order term expressing Rψ(D).

As our numerical structure considered is a field we have explicit access to a

constant “1” and the subtraction and division operations. Further the aggregates

allowed include first and second-order summation, so we can easily calculate |A|k
using

|A|k =
∑
b∈A

1 · . . . ·
∑
b∈A

1︸ ︷︷ ︸
k factors

.
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We now have to show how to express Hψ[ā]. The idea is to use second order opera-

tions to simulate generating all possible databases. Our active-domain semantics

for second-order variables uses an active domain ad given as

ad = {r ∈ R | ν(f(ā) = r) > 0 for some f ∈ F , ā ∈ A}.

Therefore the set of all functions with the same arity as an f ∈ F taking values

in ad will include all variations of f in all possible databases.

Let G be a sequence of second-order variables, i.e. variables taking as values

functions from the primary to the secondary part, where for each fi ∈ F there is

a gi ∈ G with same arity. Let B be the database where all fi are replaced by the

corresponding gi. Then

Hψ[ā] =
∑
G

(
χ[ψ[ā]A 6= ψ[ā]B] · ν(B)

)
.

And the probability of B can be directly calculated as

ν(B) =
∑
gi∈G

∑
ā

νfi
(ā, gi(ā)).

The query ψ itself is second-order too, so the reliability can indeed be expressed

using a second-order formula using our construction.

Lemma 4.9. Let ψ be a restricted second-order query. Then ψ is FPCHevaluable.

Proof: Let ψ be a k-ary second-order query and let D be a functional database.

All first-order constructions are polynomial-time evaluable and do not have to

be considered. Second-order quantification is handled in the same way as in

the canonical proof for SO ⊆ PH. Each existential quantifier leads to an NP

oracle invocation and each universal quantifier leads to a Co-NP invocation —

the number of quantifier alternations corresponds to the number of alternating

nested oracle calls. The interesting cases are the second-order aggregate functions.

We will look at the cases max and sum; the proof for min is similar to max.

max

Let ψ = maxR t(R), where R is a second-order variable and t a term. By induction

hypothesis we can assume to have an FPCH algorithm Mt(R), which calculates t

with respect to R. Note that t has no free first-order variables: When evaluating

a query with free variables it is evaluated once for each possible interpretation of
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these variables. The algorithm given below first finds an Rmax such that t(Rmax)

is maximal and then calculates t(Rmax).

The truth values of all atomic statements Rmax(ā) are chosen successively. Let

there be k of these truth values, so we have to find k bits representing Rmax. To

find the value of the i-th bit, we invoke the following algorithm with the first

(i− 1) bits as argument.

Construct a local Ra by taking the first (i − 1) bits as given and guessing all

others. Next let ra = t(Ra). We now have to find out, whether ra is maximal,

using the algorithm described below. If ra is not maximal, the Ra we have guessed

is uninteresting and we reject. If ra is maximal, we accept iff the i-th bit (which

was guessed) is 1. I.e. if by extending our already given (i−1) bits by a 1 as i-th

bit we get some i bits which can be extended to an Rmax.

To find out whether ra is not maximal we guess an Rb, again taking the (i − 1)

first bits as given. Then let rb = t(Rb). We accept iff rb > ra.

It follows by induction that the so constructed Rmax has the desired property and

we can calculte the value of ψ as t(Rmax).

sum

Now similarly let ψ =
∑

R t(R). In case the secondary part consists of the natu-

rals, we simply invoke a #P-oracle which guesses R and produces t(R) accepting

computation paths. As t(R) is syntactically shorter than ψ we can again assume

to have an FPCH algorithm for t.

In case we are dealing with rationals, we have to get around the problem of #P

oracles not being able to return fractions. The solution will be to find a poly-

nomial upper bound for the denominator of the result of each second-order sum.

Care has to be taken, as the simple algorithm of multiplying all denominators

occuring in the sum would produce a double-exponentially large number with an

exponentially large representation.

Write ψD as fraction v
w
. We will first construct w and then calculate v. First

note that we have an ordering on the set of all possible functions for R. We

can either use the ordering supplied as part of the secondary structure or look

at the encodings on the Turing tape. The initial value of w′, which at the end

of the computation will have the correct value of w, is the denominator of the

result of t applied to the first of above possible functions. Next we invoke the

following #P-algorithm A until it returns a value of 1. As long as other values

are returned, calculate a new w′ by multipliyng w′ by said return value.
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A Guess an Ra as interpretation for R nondeterministically. Then calculate

ra = t(Ra). If the denominator of ra divides w′, reject. Otherwise find out

whether Ra is the smallest function with the property that t(Ra) does not

divide w′ by invoking the NP-algorithm B below. If Ra is not this smallest

function, reject. Otherwise calculate the gcd g of ra and w′ and return g,

i.e. produce exactly g accepting computation paths.

B Guess an Rb nondeterministically and calculate rb = t(Rb). We then check

whether the denominator of rb does not divide w′. If that is the case, we

accept iff Rb < Ra, signalling that Ra is not the smallest function with that

property.

It is clear, that if we let w = w′ after above loop terminates, then w is the

smallest non-negative integer which can be used as denominator for ψD (without

knowledge about the numerators).

We can now calculate v by using a #P-algorithm. First all possible functions for

R are constructed nondeterministically in parallel. Then t is evaluated using the

guessed R, which yields some result r. Finally a representation of r in the form
r′
w

is calculated and r′ accepting computation paths produced.

Clearly the given algorithm is polynomial-time iff. the length of the binary pre-

sentation of w is polynomially bounded. To establish a proof for the “=⇒”

direction needed we use the fact that ψ is restricted. But first take a look at

the prime decomposition of w. Let di denote the denominators of the addends.

There are two ways, how w could become to large, i.e. require an exponentially

long (binary) representation. Any one prime could occur to often as factor of w.

However this is not possible due to the di being of only polynomial size. The

other possibility is that the di contain to many different primes as factors, which

would all have to occur in w.

Now let us split the di giving di = d · d′i, where d is the part of the di not

depending on i. As d is in that sense fixed it does not have to be considered

further. The d′i on the other hand are built only using addition, subtraction and

multiplication. These operations are applied (nested) to elements of the active

domain and elements come into existence throuth other constructions, like the

characteristic function operator, which however all produce integers. It follows

that the d′i can not contain any prime not already present in some denominator

of a member of the active domain. However a number of primes exponential

in the size of the database representation can not occur simultaneously in the

denominators occuring in the active domain without one of these denominators

being larger than the whole database it is part of.
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